Existence of infinitely many solutions for the (p, q)-Laplace equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence results of infinitely many solutions for a class of p(x)-biharmonic problems

The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.

متن کامل

Infinitely many solutions for a class of $p$-biharmonic‎ ‎equation in $mathbb{R}^N$

‎Using variational arguments‎, ‎we prove the existence of infinitely‎ ‎many solutions to a class of $p$-biharmonic equation in‎ ‎$mathbb{R}^N$‎. ‎The existence of‎ ‎nontrivial‎ ‎solution is established under a new‎ ‎set of hypotheses on the potential $V(x)$ and the weight functions‎ ‎$h_1(x)‎, ‎h_2(x)$‎.

متن کامل

A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS

The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...

متن کامل

infinitely many solutions for a class of $p$-biharmonic‎ ‎equation in $mathbb{r}^n$

‎using variational arguments‎, ‎we prove the existence of infinitely‎ ‎many solutions to a class of $p$-biharmonic equation in‎ ‎$mathbb{r}^n$‎. ‎the existence of‎ ‎nontrivial‎ ‎solution is established under a new‎ ‎set of hypotheses on the potential $v(x)$ and the weight functions‎ ‎$h_1(x)‎, ‎h_2(x)$‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA

سال: 2016

ISSN: 1021-9722,1420-9004

DOI: 10.1007/s00030-016-0402-1